CHAPTER AND TOPIC INDEX, VOLUMES 1–73

Many chapters contain brief discussions of reactions and comparisons of alternative synthetic methods related to the reaction that is the subject of the chapter. These related reactions and alternative methods are not usually listed in this index. In this index, the volume number is in **boldface**, the chapter number is in ordinary type.

```
Acetoacetic ester condensation, 1, 9
                                                  replacement of hydroxy group by
                                                       nucleophiles, 29, 1; 42, 2
Acetylenes:
   cotrimerizations of, 68, 1
                                                  resolution of, 2, 9
   oxidation by dioxirane, 69, 1
                                              Alcohols, synthesis:
   reactions with Fischer carbene
                                                  by allylstannane addition to aldehydes,
        complexes, phenol and quinone
        formation, 70, 2
                                                  by base-promoted isomerization of
   synthesis of, 5, 1; 23, 3; 32, 2
                                                      epoxides, 29, 3
Acid halides:
                                                  by hydroboration, 13, 1
   reactions with esters, 1, 9
                                                  by hydroxylation of ethylenic
   reactions with organometallic
                                                       compounds, 7, 7
        compounds, 8, 2
                                                  by organochromium reagents to
α-Acylamino acid mixed anhydrides, 12,
                                                       carbonyl compounds, 64, 3
                                                  by reduction, 6, 10; 8, 1; 71, 1
α-Acylamino acids, azlactonization of, 3, 5
                                                  from organoboranes, 33, 1; 73, 1
Acylation:
                                              Aldehydes, additions of allyl, allenyl,
   of esters with acid chlorides, 1, 9
                                                    propargyl stannanes, 64, 1
   intramolecular, to form cyclic ketones,
                                                  addition of allylic boron compounds,
        2, 4; 23, 2
                                                       73, 1
   of ketones to form diketones, 8, 3
                                              Aldehydes, catalyzed addition to double
Acyl fluorides, synthesis of, 21, 1; 34, 2;
                                                    bonds, 40, 4
                                              Aldehydes, synthesis of, 4, 7; 5, 10; 8, 4,
     35. 3
Acyl hypohalites, reactions of, 9, 5
                                                    5: 9, 2: 33, 1
                                              Aldol condensation, 16:67, 1
Acyloins, 4, 4; 15, 1; 23, 2
Alcohols:
                                                  catalytic, enantioselective, 67, 1
                                                  directed, 28, 3
   conversion to fluorides. 21. 1. 2: 34. 2:
        35. 3
                                                  with boron enolates, 51, 1
   conversion to olefins, 12, 2
                                              Aliphatic fluorides, 2, 2; 21, 1, 2; 34, 2;
   oxidation of, 6, 5; 39, 3; 53, 1
                                                    35. 3
```

Organic Reactions, Vol. 73, Edited by Scott E. Denmark et al. © 2008 Organic Reactions, Inc. Published by John Wiley & Sons, Inc.

Alkanes: by reduction	Alkoxyphosphonium cations, nucleophilic
of alkyl halides with organochromium	displacements on, 29, 1
reagents, 64, 3	Alkylation:
of carbonyl groups with organosilanes,	of allylic and benzylic carbanions, 27,
71 , 1	1
oxidation of, 69, 1	with amines and ammonium salts, 7, 3
Alkenes:	of aromatic compounds, 3, 1
arylation of, 11, 3; 24, 3; 27, 2	of esters and nitriles, 9, 4
asymmetric dihydroxylation, 66, 2	γ -, of dianions of β -dicarbonyl
cyclopropanes from, 20 , 1	compounds, 17, 2
cyclization in intramolecular Heck	of metallic acetylides, 5, 1
reactions 60 , 2	of nitrile-stabilized carbanions, 31
from carbonyl compounds with	with organopalladium complexes, 27,
organochromium reagents, 64 , 3	2
dioxirane epoxidation of, 61 , 2	Alkylidenation by titanium-based reagents
epoxidation and hydroxylation of, 7, 7	43 , 1
free-radical additions to, 13 , 3, 4	Alkylidenesuccinic acids, synthesis and
hydroboration of, 13 , 1	reactions of, 6 , 1
hydrogenation with homogeneous	Alkylidene triphenylphosphoranes,
catalysts, 24 , 1	synthesis and reactions of, 14, 3
reactions with diazoacetic esters, 18 , 3	Allenylsilanes, electrophilic substitution
reactions with nitrones, 36 , 1	reactions of, 37, 2
reduction by:	Allylboration of carbonyl compounds, 73,
alkoxyaluminum hydrides, 34 , 1	1
diimides, 40 , 2	Allyl transfer reactions, 73 , 1
organosilanes, 71 , 1	Allylic alcohols, synthesis:
Alkenes, synthesis:	from epoxides, 29 , 3
from amines, 11, 5	by Wittig rearrangement, 46 , 2
from aryl and vinyl halides, 27 , 2	Allylic and benzylic carbanions,
by Bamford-Stevens reaction, 23, 3	heteroatom-substituted, 27, 1
by Claisen and Cope rearrangements,	Allylic hydroperoxides, in
22, 1	photooxygenations, 20 , 2
	Allylic rearrangements, transformation of
by dehydrocyanation of nitriles, 31 by deoxygenation of vicinal diols, 30 , 2	glycols into 2,3-unsaturated glycosyl
	derivatives, 62 , 4
from α-halosulfones, 25 , 1; 62 , 2	Allylic rearrangements, trihaloacetimidate,
by palladium-catalyzed vinylation, 27,	66 , 1
from absorbs and stabilized suitans 25	π -Allylnickel complexes, 19, 2
from phosphoryl-stabilized anions, 25,	Allylphenols, synthesis by Claisen
1 1 2 6 4 4 10 0	rearrangement, 2, 1; 22, 1
by pyrolysis of xanthates, 12 , 2	Allylsilanes, electrophilic substitution
from silicon-stabilized anions, 38 , 1	reactions of, 37, 2
from tosylhydrazones, 23, 3; 39, 1	Aluminum alkoxides:
by Wittig reaction, 14, 3	in Meerwein-Ponndorf-Verley
Alkenyl- and alkynylaluminum reagents,	reduction, 2, 5
32 , 2	in Oppenauer oxidation, 6 , 5
Alkenyllithiums, formation of 39 , 1	Amide formation by oxime rearrangement
Alkoxyaluminum hydride reductions, 34 ,	35 , 1
1: 36 . 3	α-Amidoalkylations at carbon, 14, 2

Amination:	Arylamines, synthesis and reactions of, 1,
electrophilic, of carbanions and	5
enolates, 72, 1	Arylation:
of heterocyclic bases by alkali amides,	by aryl halides, 27, 2
1, 4	by diazonium salts, 11 , 3; 24 , 3
of hydroxy compounds by Bucherer	γ -, of dianions of β -dicarbonyl
reaction, 1, 5	compounds, 17, 2
Amine oxides:	of nitrile-stabilized carbanions, 31
	of alkenes, 11, 3; 24, 3; 27, 2
Polonovski reaction of, 39 , 2	Arylglyoxals, condensation with aromatic
pyrolysis of, 11, 5	hydrocarbons, 4 , 5
Amines:	Arylsulfonic acids, synthesis of, 3 , 4
from allylstannane addition to imines,	Aryl halides, homocoupling of, 63 , 3
64 , 1	Aryl thiocyanates, 3, 6
oxidation of, 69 , 1	Asymmetric aldol reactions using boron
synthesis from organoboranes, 33, 1	enolates, 51 , 1
synthesis by reductive alkylation, 4, 3;	Asymmetric cyclopropanation, 57 , 1
5 , 7	Asymmetric dihydroxylation, 66 2
synthesis by Zinin reaction, 20, 4	Asymmetric epoxidation, 48 , 1; 61 , 2
reactions with cyanogen bromide, 7, 4	Asymmetric reduction, 71 , 1
α-Aminoacid synthesis, via Strecker	Asymmetric Strecker reaction, 70 , 1
Reaction, 70, 1	Atom transfer preparation of radicals, 48,
α-Aminoalkylation of activated olefins,	Atom transfer preparation of fadicals, 46,
51 , 2	A za Payna maaman gamanta 60 1
Aminophenols from anilines, 35 , 2	Aza-Payne rearrangements, 60 , 1 Azaphenanthrenes, synthesis by
Anhydrides of aliphatic dibasic acids,	
Friedel-Crafts reaction with, 5, 5	photocyclization, 30, 1
Anion-assisted sigmatropic	Azides, synthesis and rearrangement of, 3,
	9
rearrangements, 43, 2	Azlactones, 3, 5
Anthracene homologs, synthesis of, 1, 6	
Anti-Markownikoff hydration of alkenes,	Baeyer-Villiger reaction, 9, 3; 43, 3
13 , 1	Bamford-Stevens reaction, 23 , 3
π -Arenechromium tricarbonyls, reaction	Barbier Reaction, 58 , 2
with nitrile-stabilized carbanions, 31	Bart reaction, 2 , 10
η ⁶ -(Arene)chromium complexes, 67 , 2	Barton fragmentation reaction, 48 , 2
Arndt-Eistert reaction, 1, 2	Béchamp reaction, 2, 10
Aromatic aldehydes, synthesis of, 5, 6; 28,	Beckmann rearrangement, 11 , 1; 35 , 1
1	Benzils, reduction of, 4 , 5
Aromatic compounds, chloromethylation	Benzoin condensation, 4 , 5
of, 1 , 3	Benzoquinones:
Aromatic fluorides, synthesis of, 5, 4	acetoxylation of, 19 , 3
Aromatic hydrocarbons, synthesis of, 1, 6;	in Nenitzescu reaction, 20 , 3
30 , 1	synthesis of, 4, 6
Aromatic substitution by the $S_{RN}1$	Benzylic carbanions, 27 , 1; 67 , 2
reaction, 54 , 1	Biaryls, synthesis of, 2 , 6; 63 , 3
Arsinic acids, 2, 10	· · · · · · · · · · · · · · · · · · ·
Arsonic acids, 2, 10 Arsonic acids, 2, 10	Bicyclobutanes, from cyclopropenes, 18, 3
	Biginelli dihydropyrimidine synthesis, 63 ,
Arylacetic acids, synthesis of, 1, 2; 22, 4 8-Arylacetylic acids, synthesis of, 1, 8	1 Rirch reaction 23 1: 42 1
D-ALVIACIVIIC ACION SVIIIIENIN OL 1 A	DITCH TEACHOR AND IT 44 A. I.

33, 1

Bischler-Napieralski reaction, 6, 2 by organocopper reagents, 19, 1; 38, 2; Bis(chloromethyl) ether, 1, 3; 19, warning 41, 2 Boron enolates, 51, 1 by organopalladium complexes, 27, 2 Borane reagents, for allylic transfer, 73, by organozinc reagents, 20, 1 by rearrangement of α-halosulfones, Borohydride reduction, chiral, 52, 2 **25**, 1; **62**, 2 in reductive amination, 59, 1 by Reformatsky reaction, 1, 1; 28, 3 Boyland-Sims oxidation, 35, 2 by trivalent manganese, 49, 3 Bucherer reaction, 1, 5 by Vilsmeier reaction, 49, 1; 56, 2 by vinylcyclopropane-cyclopentene rearrangement, 33, 2 Cannizzaro reaction, 2, 3 Carbon-fluorine bond formation, 21, 1; 34, Carbanion, electrophilic amination, 72, 1 2: 35, 3: 69, 2 Carbenes, 13, 2; 26, 2; 28, 1 Carbon-halogen bond formation, Carbene complexes in phenol and quinone by replacement of hydroxy groups, 29, synthesis, 70, 2 Carbenoid cyclopropanation, 57, 1; 58, 1 Carbon-heteroatom bond formation: Carbohydrates, deoxy, synthesis of, 30, 2 by free-radical chain additions to Carbo/metallocupration, 41, 2 carbon-carbon multiple bonds, 13, Carbon-carbon bond formation: by acetoacetic ester condensation, 1, 9 by organoboranes and organoborates, by acyloin condensation, 23, 2 **33**. 1 by aldol condensation, 16; 28, 3; 46, Carbon-nitrogen bond formation, 1:67. 1 by reductive amination, 59, 1 by alkylation with amines and Carbon-phosphorus bond formation, 36, 2 ammonium salts, 7, 3 Carbonyl compounds, addition of by γ -alkylation and arylation, 17, 2 organochromium reagents, 64, 3 by allylic and benzylic carbanions, 27, Carbonyl compounds, α,β -unsaturated: formation by selenoxide elimination, by amidoalkylation, 14, 2 **44**. 1 by Cannizzaro reaction, 2, 3 vicinal difunctionalization of, 38, 2 by Claisen rearrangement, 2, 1; 22, 1 Carbonyl compounds, from nitro by Cope rearrangement, 22, 1 compounds, 38, 3 by cyclopropanation reaction, 13, 2; in the Passerini Reaction, 65, 1 **20**. 1 oxidation with hypervalent iodine by Darzens condensation, 5, 10 reagents, 54, 2 by diazonium salt coupling, 10, 1; 11, reactions with allylic boron 3: **24**. 3 compounds, 73, 1 by Dieckmann condensation, 15, 1 reductive amination of, 59, 1 by Diels-Alder reaction, 4, 1, 2; 5, 3; Carbonylation as part of intramolecular by free-radical additions to alkenes, 13, Heck reaction, 60, 2 Carboxylic acid derivatives, conversion to fluorides, 21, 1, 2; 34, 2; 35, 3 by Friedel-Crafts reaction, 3, 1; 5, 5 by Knoevenagel condensation, 15, 2 Carboxylic acids: by Mannich reaction, 1, 10; 7, 3 synthesis from organoboranes, 33, 1 by Michael addition, 10, 3 reaction with organolithium reagents, by nitrile-stabilized carbanions, 31 **18**. 1 by organoboranes and organoborates, Catalytic enantioselective aldol addition,

67, 1

Chapman rearrangement, 14, 1; 18, 2	Cyanoethylation, 5, 2
Chloromethylation of aromatic	Cyanogen bromide, reactions with tertiary
compounds, 2, 3; 9, warning	amines, 7, 4
Cholanthrenes, synthesis of, 1, 6	Cyclic ketones, formation by
Chromium reagents, 64, 3; 67, 2	intramolecular acylation, 2, 4; 23, 2
Chugaev reaction, 12, 2	Cyclization:
Claisen condensation, 1, 8	of alkyl dihalides, 19, 2
Claisen rearrangement, 2, 1; 22, 1	of aryl-substituted aliphatic acids, acid
Cleavage:	chlorides, and anhydrides, 2, 4;
of benzyl-oxygen, benzyl-nitrogen, and	23 , 2
benzyl-sulfur bonds, 7, 5	of α-carbonyl carbenes and carbenoids.
of carbon-carbon bonds by periodic	26 , 2
acid, 2, 8	cycloheptenones from α-bromoketones.
of esters via S_N 2-type dealkylation, 24,	29 , 2
2	of diesters and dinitriles, 15, 1
of non-enolizable ketones with sodium	Fischer indole, 10, 2
amide, 9 , 1	intramolecular by acylation, 2, 4
in sensitized photooxidation, 20, 2	intramolecular by acyloin
Clemmensen reduction, 1, 7; 22, 3	condensation, 4, 4
Collins reagent, 53 , 1	intramolecular by Diels-Alder reaction,
Condensation:	32 , 1
acetoacetic ester, 1, 9	intramolecular by Heck reaction, 60, 2
acyloin, 4, 4; 23, 2	intramolecular by Michael reaction, 47
aldol, 16	2
benzoin, 4, 5	Nazarov, 45 , 1
Biginelli, 63, 1	by radical reactions, 48, 2
Claisen, 1, 8	of stilbenes, 30, 1
Darzens, 5, 10; 31	tandem cyclization by Heck reaction,
Dieckmann, 1, 9; 6, 9; 15, 1	60 , 2
directed aldol, 28, 3	Cycloaddition reactions,
Knoevenagel, 1, 8; 15, 2	of cyclenones and quinones, 5, 3
Stobbe, 6 , 1	cyclobutanes, synthesis of, 12, 1; 44, 2
Thorpe-Ziegler, 15 , 1; 31	cyclotrimerization of acetylenes, 68, 1
Conjugate addition:	Diels-Alder, acetylenes and alkenes, 4,
of hydrogen cyanide, 25 , 3	2
of organocopper reagents, 19, 1; 41, 2	Diels-Alder, imino dienophiles, 65 , 2
Cope rearrangement, 22 , 1; 41 , 1; 43 , 2	Diels-Alder, intramolecular, 32, 1
Copper-Grignard complexes, conjugate	Diels-Alder, maleic anhydride, 4, 1
additions of, 19 , 1; 41 , 2	[4+3], 51 , 3
Corey-Winter reaction, 30, 2	of enones, 44 , 2
Coumarins, synthesis of, 7, 1; 20, 3	of ketenes, 45 , 2
Coupling reaction of organostannanes, 50,	of nitrones and alkenes, 36, 1
1	Pauson-Khand, 40, 1
Cuprate reagents, 19 , 1; 38 , 2; 41 , 2	photochemical, 44, 2
Curtius rearrangement, 3 , 7, 9	retro-Diels-Alder reaction, 52, 1; 53, 2
Cyanation, of <i>N</i> -heteroaromatic	[6+4], 49 , 2
compounds, 70, 1	[3 + 2], 61 , 1
Cyanoborohydride, in reductive	Cyclobutanes, synthesis:
aminations, 59 , 1	from nitrile-stabilized carbanions, 31

Diazoacetic esters, reactions with alkenes,
alkynes, heterocyclic and aromatic compounds, 18 , 3; 26 , 2
α-Diazocarbonyl compounds, insertion
and addition reactions, 26, 2
Diazomethane:
in Arndt-Eistert reaction, 1, 2
reactions with aldehydes and ketones,
8 , 8
Diazonium fluoroborates, synthesis and
decomposition, 5, 4
Diazonium salts:
coupling with aliphatic compounds, 10
1, 2
in deamination of aromatic primary amines, 2 , 7
in Meerwein arylation reaction, 11, 3;
24 , 3
in ring closure reactions, 9 , 7
in synthesis of biaryls and aryl
quinones, 2, 6
Dieckmann condensation, 1, 9; 15, 1
for synthesis of tetrahydrothiophenes,
6. 9
Diels-Alder reaction:
intramolecular, 32, 1
retro-Diels-Alder reaction, 52 , 1; 53 ,
2
with alkynyl and alkenyl dienophiles,
4 , 2
with cyclenones and quinones, 5, 3
with imines, 65 , 2
with maleic anhydride, 4, 1
Dihydrodiols, 63 , 2
Dihydropyrimidine synthesis, 63 , 1
Dihydroxylation of alkenes, asymmetric,
66 , 2
Diimide, 40 , 2
Diketones:
pyrolysis of diaryl, 1, 6
reduction by acid in organic solvents,
22 , 3
synthesis by acylation of ketones, 8, 3
synthesis by alkylation of β-diketone
anions, 17 , 2
Dimethyl sulfide, in oxidation reactions,
39 , 3
Dimethyl sulfoxide, in oxidation reactions
39 , 3

Diols:	reaction with organolithium reagents,
deoxygenation of, 30 , 2	18 , 1
oxidation of, 2, 8	reduction of, 8 , 1; 71 , 1
Dioxetanes, 20, 2	synthesis from diazoacetic esters, 18, 3
Dioxiranes, 61, 2; 69, 1	synthesis by Mitsunobu reaction, 42 , 2
Dioxygenases, 63, 2	Ethers, synthesis by Mitsunobu reaction,
Divinyl-aziridines, -cyclopropanes,	42 , 2
-oxiranes, and -thiiranes,	Exhaustive methylation, Hofmann, 11, 5
rearrangements of, 41, 1	• , , ,
Doebner reaction, 1, 8	
	Favorskii rearrangement, 11, 4
T	Ferrocenes, 17, 1
Eastwood reaction, 30, 2	Fischer carbene complexes, 70 , 2
Elbs reaction, 1 , 6; 35 , 2	Fischer indole cyclization, 10, 2
Electrophilic	Fluorinating agents, electrophilic, 69, 2
amination, 72 , 1	Fluorination of aliphatic compounds, 2, 2;
fluorination, 69 , 2	21 , 1, 2; 34 , 2; 35 , 3; 69 , 2
Enamines, reaction with quinones, 20 , 3	of carbonyl compounds, 69, 2
Enantioselective: aldol reactions, 67 , 1	of heterocycles, 69, 2
allylation and crotylation, 73 , 1	Fluorination:
Ene reaction, in photosensitized	by DAST, 35 , 3
oxygenation, 20 , 2	by N-F reagents, 69, 2
Enolates:	by sulfur tetrafluoride, 21, 1; 34, 2
Fluorination of, 69 , 2	Formylation:
α -Hydroxylation of, 62 , 1	by hydroformylation, 56 , 1
in directed aldol reactions, 28 , 3; 46 , 1;	of alkylphenols, 28, 1
51 , 1	of aromatic hydrocarbons, 5, 6
Enone cycloadditions, 44 , 2	of aromatic compounds, 49, 1
Enzymatic reduction, 52 , 2	of non-aromatic compounds, 56, 2
Enzymatic resolution, 37, 1	Free radical additions:
Epoxidation:	to alkenes and alkynes to form
of alkenes, 61, 2	carbon-heteroatom bonds, 13, 4
of allylic alcohols, 48, 1	to alkenes to form carbon-carbon
with organic peracids, 7 , 7	bonds, 13 , 3
Epoxide isomerizations, 29 , 3	Freidel-Crafts catalysts, in nucleoside
Epoxide	synthesis, 55 , 1
formation, 61, 2	Friedel-Crafts reaction, 2, 4; 3, 1; 5, 5; 18,
migration, 60 , 1	1
Esters:	Friedländer synthesis of quinolines, 28, 2
acylation with acid chlorides, 1, 9	Fries reaction, 1, 11
alkylation of, 9, 4	
alkylidenation of, 43 , 1	
cleavage via S_N 2-type dealkylation, 24 ,	Gattermann aldehyde synthesis, 9, 2
2	Gattermann-Koch reaction, 5, 6
dimerization, 23 , 2	Germanes, addition to alkenes and
glycidic, synthesis of, 5, 10	alkynes, 13, 4
hydrolysis, catalyzed by pig liver	Glycals,
esterase, 37, 1	fluorination of, 69 , 2
β -hydroxy, synthesis of, 1, 1; 22, 4	transformation in glycosyl derivatives,
β-keto, synthesis of, 15 , 1	62 , 4

Glycosides, synthesis of, 64 , 2	Hydroboration, 13 , 1
Glycosylating agents, 68, 2	Hydrocyanation of conjugated carbonyl
Glycosylation on polymer supports, 68 , 2	compounds, 25, 3
Glycosylation, with sulfoxides and	Hydroformylation, 56 , 1
sulfinates, 64 , 2	Hydrogenation catalysts, homogeneous,
Glycidic esters, synthesis and reactions of,	24 , 1
5 , 10	Hydrogenation of esters, with copper
Gomberg-Bachmann reaction, 2, 6; 9, 7	chromite and Raney nickel, 8, 1
Grundmann synthesis of aldehydes, 8, 5	Hydrohalogenation, 13, 4
	Hydroxyaldehydes, aromatic, 28 , 1
	α-Hydroxyalkylation of activated olefins,
Halides, displacement reactions of, 22 , 2; 27 , 2	51 , 2
Halide-metal exchange, 58, 2	α-Hydroxyketones,:
Halides, synthesis:	rearrangement, 62 , 3
from alcohols, 34 , 2	synthesis of, 23 , 2
by chloromethylation, 1, 3	Hydroxylation:
from organoboranes, 33 , 1	of enolates, 62 , 1
from primary and secondary alcohols,	of ethylenic compounds with organic
29 , 1	peracids, 7, 7
Haller-Bauer reaction, 9, 1	Hypervalent iodine reagents, 54 , 2; 57 , 2
Halocarbenes, synthesis and reactions of,	
13 , 2	Imidates, rearrangement of, 14, 1
Halocyclopropanes, reactions of, 13, 2	Imines, additions of allyl, allenyl,
Halogen-metal interconversion reactions,	propargyl stannanes, 64 , 1
6 , 7	additions of cyanide, 70 , 1
α-Haloketones, rearrangement of, 11 , 4	as dienophiles, 65 , 2
α-Halosulfones, synthesis and reactions of,	synthesis, 70, 1
25 , 1; 62 , 2	Iminium ions, 39 , 2; 65 , 2
Heck reaction, intramolecular, 60, 2	Imino Diels-Alder reactions, 65, 2
Helicenes, synthesis by photocyclization,	Indoles, by Nenitzescu reaction, 20, 3
30 , 1	by reaction with TosMIC, 57 , 3
Heterocyclic aromatic systems, lithiation	Ionic hydrogenation, 71 , 1
of, 26 , 1	Isocyanides, in the Passerini reaction, 65
Heterocyclic bases, amination of, 1, 4	1
in nucleosides, 55 , 1	sulfonylmethyl, reactions of, 57, 3
Heterodienophiles, 53 , 2	Isoquinolines, synthesis of, 6, 2, 3, 4; 20
Hilbert-Johnson method, 55 , 1	3
Hoesch reaction, 5, 9	
Hofmann elimination reaction, 11, 5; 18, 4	1
Hofmann reaction of amides, 3, 7, 9	Jacobsen reaction, 1, 12
Homocouplings mediated by Cu, Ni, and	Japp-Klingemann reaction, 10, 2
Pd, 63 , 3	
Homogeneous hydrogenation catalysts, 24,	Katsuki-Sharpless epoxidation, 48, 1
1	Ketene cycloadditions, 45, 2
Hunsdiecker reaction, 9, 5; 19, 4	Ketenes and ketene dimers, synthesis of,
Hydration of alkenes, dienes, and alkynes,	3 , 3; 45 , 2
13 , 1	α-Ketol rearrangement, 62 , 3
Hydrazoic acid, reactions and generation	Ketones:
of, 3, 8	acylation of, 8, 3

alkylidenation of, 43, 1 Baeyer-Villiger oxidation of, 9, 3; 43, 3 cleavage of non-enolizable, 9, 1 comparison of synthetic methods, 18, 1 conversion to amides, 3, 8; 11, 1 conversion to fluorides, 34, 2; 35, 3 cyclic, synthesis of, 2, 4; 23, 2 cyclization of divinyl ketones, 45, 1 reaction with diazomethane, 8, 8 reduction to aliphatic compounds, 4, 8 reduction by: alkoxyaluminum hydrides, 34, 1 organosilanes, 71, 1 reduction in anhydrous organic solvents, 22, 3 synthesis by oxidation of alcohols, 6, 5; 39, 3 synthesis from acid chlorides and organo-metallic compounds, 8, 2;	Mannich reaction, 1, 10; 7, 3 Meerwein arylation reaction, 11, 3; 24, 3 Meerwein-Ponndorf-Verley reduction, 2, 5 Mercury hydride method to prepare radicals, 48, 2 Metalations with organolithium compounds, 8, 6; 26, 1; 27, 1 Methylenation of carbonyl groups, 43, 1 Methylenecyclopropane, in cycloaddition reactions, 61, 1 Methylene-transfer reactions, 18, 3; 20, 1; 58, 1 Michael reaction, 10, 3; 15, 1, 2; 19, 1; 20, 3; 46, 1; 47, 2 Microbiological oxygenations, 63, 2 Mitsunobu reaction, 42, 2 Moffatt oxidation, 39, 3; 53, 1 Morita-Baylis-Hillman reaction, 51, 2
18, 1 synthesis from organoboranes, 33, 1 synthesis from organolithium reagents and carboxylic acids, 18, 1 synthesis from α,β-unsaturated carbonyl compounds and metals in liquid ammonia, 23, 1 Kindler modification of Willgerodt reaction, 3, 2 Knoevenagel condensation, 1, 8; 15, 2; 57, 3 Koch-Haaf reaction, 17, 3 Kornblum oxidation, 39, 3 Kostaneki synthesis of chromanes, flavones, and isoflavones, 8, 3	Nazarov cyclization, 45 , 1 Nef reaction, 38 , 3 Nenitzescu reaction, 20 , 3 Nitriles: formation from oximes, 35 , 2 synthesis from organoboranes, 33 , 1 α,β-unsaturated: by elimination of selenoxides, 44 , 1 Nitrile-stabilized carbanions: alkylation and arylation of, 31 Nitroamines, 20 , 4 Nitro compounds, conversion to carbonyl compounds, 38 , 3 Nitro compounds, synthesis of, 12 , 3 Nitrone-olefin cycloadditions, 36 , 1 Nitrosation, 2 , 6; 7 , 6 Nucleosides, synthesis of, 55 , 1
Leuckart reaction, 5 , 7 Lithiation: of allylic and benzylic systems, 27 , 1 by halogen-metal exchange, 6 , 7 heteroatom facilitated, 26 , 1; 47 , 1 of heterocyclic and olefinic compounds, 26 , 1 Lithioorganocuprates, 19 , 1; 22 , 2; 41 , 2 Lithium aluminum hydride reductions, 6 , 2 chirally modified, 52 , 2 Lossen rearrangement, 3 , 7, 9	Olefin formation, by reductive elimination of β-hydroxysulfones, 72 , 2 Olefins, hydroformylation of, 56 , 1 Oligomerization of 1,3-dienes, 19 , 2 Oligosaccharide synthesis on polymer support, 68 , 2 Oppenauer oxidation, 6 , 5 Organoboranes: formation of carbon-carbon and carbon-heteroatom bonds from, 33 , 1

Organoboranes (Continued)	Oximes, formation by nitrosation, 7, 6
in allylation of carbonyl compounds,	Oxochromium(VI)-amine complexes, 53, 1
73 , 1	Oxo process, 56 , 1
isomerization and oxidation of, 13, 1	Oxygenation of arenes by dioxygenases,
reaction with anions of α -chloronitriles,	63 , 2
31 , 1	
Organochromium reagents:	Dalladium actalyzad vinylia substitution
addition to carbonyl compounds, 64, 3;	Palladium-catalyzed vinylic substitution, 27 , 2
67 , 2	Palladium-catalyzed coupling of
addition to imines, 67, 2	organostannanes, 50 , 1
Organohypervalent iodine reagents, 54, 2;	Palladium intermediates in Heck reactions.
57 , 2	60 , 2
Organometallic compounds:	Passerini Reaction, 65 , 1
of aluminum, 25, 3	Pauson-Khand reaction to prepare
of chromium, 64 , 3; 67 , 2	cyclopentenones, 40 , 1
of copper, 19 , 1; 22 , 2; 38 , 2; 41 , 2	Payne rearrangement, 60 , 1
of lithium, 6 , 7; 8 , 6; 18 , 1; 27 , 1	Pechmann reaction, 7, 1
of magnesium, zinc, and cadmium, 8,	Peptides, synthesis of, 3 , 5; 12 , 4
2;	Peracids, epoxidation and hydroxylation
of palladium, 27, 2	with, 7, 7
of silicon, 37, 2	in Baeyer-Villiger oxidation, 9 , 3; 43 , 3
of tin, 50 , 1; 64 , 1	Periodic acid oxidation, 2, 8
of zinc, 1, 1; 20, 1; 22, 4; 58, 2	Perkin reaction, 1, 8
Organosilicon hydride reductions, 71, 1	Persulfate oxidation, 35 , 2
Osmium tetroxide asymmetric	Peterson olefination, 38, 1
dihydroxylation, 66, 2	Phenanthrenes, synthesis by
Overman rearrangement of allylic	photocyclization, 30 , 1
imidates, 66 , 1	Phenols, dihydric from phenols, 35 , 2
Oxidation:	oxidation of, 57 , 2
by dioxiranes, 61 , 2; 69 , 1	synthesis from Fischer carbene
of alcohols and polyhydroxy	complexes, 70 , 2
compounds, 6 , 5; 39 , 3; 53 , 1	Phosphinic acids, synthesis of, 6 , 6
of aldehydes and ketones,	Phosphonic acids, synthesis of, 6 , 6
Baeyer-Villiger reaction, 9, 3; 43,	Phosphonium salts:
3	halide synthesis, use in, 29 , 1
of amines, phenols, aminophenols,	synthesis and reactions of, 14, 3
diamines, hydroquinones, and	Phosphorus compounds, addition to
halophenols, 4, 6; 35, 2	carbonyl group, 6 , 6; 14 , 3; 25 , 2;
of enolates and silyl enol ethers, 62, 1	36 , 2
of α -glycols, α -amino alcohols, and	addition reactions at imine carbon, 36,
polyhydroxy compounds by	2
periodic acid, 2, 8	Phosphoryl-stabilized anions, 25, 2
with hypervalent iodine reagents, 54, 2	Photochemical cycloadditions, 44 , 2
of organoboranes, 13, 1	Photocyclization of stilbenes, 30, 1
of phenolic compounds, 57, 2	Photooxygenation of olefins, 20 , 2
with peracids, 7, 7	Photosensitizers, 20 , 2
by photooxygenation, 20, 2	Pictet-Spengler reaction, 6, 3
with selenium dioxide, 5, 8; 24, 4	Pig liver esterase, 37, 1

Oxidative decarboxylation, 19, 4

Polonovski reaction, 39, 2

Polyalkylbenzenes, in Jacobsen reaction,	Lossen, 3, 7, 9
1, 12	Ramberg-Bäcklund, 25, 1; 62, 2
Polycyclic aromatic compounds, synthesis	Smiles, 18 , 2
by photocyclization of stilbenes, 30,	Sommelet-Hauser, 18, 4
1	Stevens, 18, 4
Polyhalo ketones, reductive	[2,3] Wittig, 46 , 2
dehalogenation of, 29, 2	vinylcyclopropane-cyclopentene, 33 , 2
Pomeranz-Fritsch reaction, 6, 4	Reduction:
Prévost reaction, 9, 5	of acid chlorides to aldehydes, 4, 7; 8,
Pschorr synthesis, 2, 6; 9, 7	5
Pummerer reaction, 40 , 3	of aromatic compounds, 42 , 1
Pyrazolines, intermediates in diazoacetic	of benzils, 4, 5
ester reactions, 18, 3	of ketones, enantioselective, 52 , 2
Pyridinium chlorochromate, 53 , 1	Clemmensen, 1, 7; 22, 3
Pyrolysis:	
of amine oxides, phosphates, and acyl	desulfurization, 12, 5
derivatives, 11, 5	with diimide, 40, 2
of ketones and diketones, 1, 6	by dissolving metal, 42 , 1
	by homogeneous hydrogenation
for synthesis of ketenes, 3, 3	catalysts, 24, 1
of xanthates, 12, 2	by hydrogenation of esters with copper
	chromite and Raney nickel, 8, 1
Quaternary ammonium	hydrogenolysis of benzyl groups, 7, 5
N-F reagents, 69 , 2	by lithium aluminum hydride, 6 , 10
salts, rearrangements of, 18 , 4	by Meerwein-Ponndorf-Verley reaction,
Quinolines, synthesis of,	2 , 5
by Friedländer synthesis, 28 , 2	chiral, 52 , 2
by Skraup synthesis, 7, 2	by metal alkoxyaluminum hydrides, 34,
Quinones:	1; 36 , 3
acetoxylation of, 19 , 3	by organosilanes, 71 , 1
diene additions to, 5 , 3	of mono- and polynitroarenes, 20, 4
synthesis of, 4 , 6	of olefins by diimide, 40, 2
	of α,β-unsaturated carbonyl
synthesis from Fischer carbene	compounds, 23, 1
complexes, 70 , 2	by samarium(II) iodide, 46, 3
in synthesis of 5-hydroxyindoles, 20 , 3	by Wolff-Kishner reaction, 4, 8
	Reductive alkylation, synthesis of amines,
Ramberg-Bäcklund rearrangement, 25, 1;	4 , 3; 5 , 7
62 , 2	Reductive amination of carbonyl
Radical formation and cyclization, 48 , 2	compounds, 59 , 1; 71 , 1
Rearrangements:	Reductive cyanation, 57 , 3
allylic trihaloacetamidate, 66 , 1	Redutive desulfonylation, 72 , 2
anion-assisted sigmatropic, 43 , 2	Reductive desulfurization of thiol esters,
Beckmann, 11 , 1; 35 , 1	8, 5
	Reformatsky reaction, 1, 1; 22, 4
Chapman, 14 , 1; 18 , 2	
Claisen, 2, 1; 22, 1	Reimer-Tiemann reaction, 13 , 2; 28 , 1
Cope, 22 , 1; 41 , 1, 43 , 2	Reissert reaction, 70 , 1
Curtius, 3, 7, 9	Resolution of alcohols, 2, 9 Retro Diels Alder resettion, 52, 1, 53, 2
divinylcyclopropane, 41 , 1	Retro-Diels-Alder reaction, 52 , 1; 53 , 2 Ritter reaction, 17 , 3
Favorskii, 11, 4	Kiuci feaction, 17. 5

Rosenmund reaction for synthesis of Thiazoles, synthesis of, 6, 8 arsonic acids, 2, 10 Thiele-Winter acetoxylation of quinones, Rosenmund reduction, 4, 7 Thiocarbonates, synthesis of, 17, 3 Thiocyanation of aromatic amines, Samarium(II) iodide, 46, 3 phenols, and polynuclear Sandmeyer reaction, 2, 7 hydrocarbons, 3, 6 Schiemann reaction, 5, 4 Thiophenes, synthesis of, 6, 9 Schmidt reaction, 3, 8, 9 Thorpe-Ziegler condensation, 15, 1; 31 Selenium dioxide oxidation, 5, 8; 24, 4 Tiemann reaction, 3, 9 Seleno-Pummerer reaction, 40, 3 Tiffeneau-Demjanov reaction, 11, 2 Selenoxide elimination, 44, 1 Tin(II) enolates, 46, 1 Shapiro reaction, 23, 3: 39, 1 Tin hydride method to prepare radicals, Silanes: 48. 2. addition to olefins and acetylenes, 13, 4 Tipson-Cohen reaction, 30, 2 electrophilic substitution reactions, 37, Tosylhydrazones, 23, 3; 39, 1 Tosylmethyl isocyanide (TosMIC), 57, 3 oxidation of, 69, 1 Transmetallation reactions, 58, 2 reduction with, 71, 1 Tricarbonyl(η^6 -arene)chromium Sila-Pummerer reaction, 40, 3 complexes, 67, 2 Silyl carbanions, 38, 1 Trihaloacetimidate, allylic rearrangements, Silyl enol ether, α -hydroxylation, **62** 1 Simmons-Smith reaction, 20, 1; 58, 1 Trimethylenemethane, [3 + 2]Simonini reaction, 9, 5 cycloaddtion of, 61, 1 Singlet oxygen, 20, 2 Trimerization, co-, acetylenic compounds, Skraup synthesis, **7**, 2; **28**, 2 **68**. 1 Smiles rearrangement, 18, 2 Sommelet-Hauser rearrangement, 18, 4 $S_{RN}1$ reactions of aromatic systems, **54**, 1 Ullmann reaction: Sommelet reaction, 8, 4 homocoupling mediated by Cu, Ni, and Stevens rearrangement, 18, 4 Pd. **63**. 3 Stetter reaction of aldehydes with olefins, in synthesis of diphenylamines, 14, 1 40.4 in synthesis of unsymmetrical biaryls, Strecker reaction, catalytic asymmetric, 2, 6 **70**, 1 Unsaturated compounds, synthesis Stilbenes, photocyclization of, **30**, 1 with alkenyl- and alkynylaluminum Stille reaction, 50, 1 reagents, 32, 2 Stobbe condensation, 6, 1 Substitution reactions using organocopper Vilsmeier reaction, **49**, 1; **56**, 2 reagents, 22, 2; 41, 2 Vinylcyclopropanes, rearrangement to Sugars, synthesis by glycosylation with cyclopentenes, 33, 2 sulfoxides and sulfinates, 64, 2 Vinyllithiums, from sulfonylhydrazones, Sulfide reduction of nitroarenes, 20, 4 **39**, 1 Sulfonation of aromatic hydrocarbons and Vinylsilanes, electrophilic substitution aryl halides, 3, 4 reactions of, 37, 2 Swern oxidation, 39, 3; 53, 1 Vinyl substitution, catalyzed by palladium complexes, 27, 2 von Braun cyanogen bromide reaction, 7, Tetrahydroisoquinolines, synthesis of, 6, 3 Tetrahydrothiophenes, synthesis of, 6, 9 Thia-Payne rearrangement, 60, 1 Vorbrüggen reaction, 55, 1

Willgerodt reaction, **3**, 2 Wittig reaction, **14**, 3; **31** [2,3]-Wittig rearrangement, **46**, 2 Wolff-Kishner reaction, **4**, 8

Xanthates, synthesis and pyrolysis of, 12,

Ylides:

in Stevens rearrangement, **18**, 4 in Wittig reaction, structure and properties, **14**, 3

Zinc-copper couple, **20**, 1; **58**, 1, 2 Zinin reduction of nitroarenes, **20**, 4